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EFFECT OF SPEED AND LOAD ON ULTRA-HIGH-SPEED BALL BEARINGS

by Eric N. Bamberger,* Erwin V. Zaretsky, and Hans Signert

Lewis Research Center

SUMMARY

Parametric tests were conducted in a high-speed, high-temperature bearing tester

with optimally designed 200 and 240 contact angle 120-millimeter-bore angular-contact

ball bearings. The bearings were manufactured from double vacuum-melted AISI M-50

steels having a room-temperature Rockwell C hardness of 63. Test parameters were

thrust loads of 6672, 13 350, and 22 240 newtons (1500, 3000, and 5000 Ib) and nominal

speeds of 12 000, 16 000, 20 000, and 25 000 rpm. Test conditions included an oil-inlet

temperature of 428 K (3100 F), a lubricant flow rate through the inner race of 1. 210- 3

cubic meter per minute (0.313 g/min), an inner-race cooling flow rate of 3. 6x10 - 3 cubic

meter per minute (0.94 g/min), and an outer-race cooling flow rate of 1. 9x10 - 3 cubic

meter per minute (0. 5 g/min). The lubricant was a neopentylpolyol (tetra) ester.

Bearing inner- and outer-race temperatures increased with increases in load and/or

speed. However, the effect of load on temperature was small relative to the speed ef-

fect. The difference between the inner- and outer-race temperature was negligible.

Bearing power consumption increased with speed. The increase in power consump-

tion with thrust load was considered negligible relative to the effect of speed for most

practical engineering design applications.

Actual measurements of bearing operational contact angle were in excellent agree-

ment with theoretical predictions with the exception of the inner-race contact angle at the

maximum speed and load condition.

A comparison of measured cage speed to theoretical predictions indicates that, with

the exception of the 12 000 rpm, 200 contact angle data, the bearings operated with some

skidding. The highest amounts of skidding (6 percent of the theoretical cage speed) oc-

curred at the 25 000 rpm (3x106 DN) test conditions. (DN is defined as the speed of the

bearing in rpm multiplied by the bearing bore in millimeters.) Skidding decreased with

increasing thrust load and decreasing speed. No visible damage to the bearing surfaces

was observed.

*General Electric Co., Cincinnati, Ohio.

TIndustrial Tectonics, Inc., Compton, California.



INTRODUCTION

Advances in bearing technology allow angular-contact ball bearings to operate at

speeds to 3x10 6 DN (ref. 1). (DN is defined as the speed of the bearing in rpm multi-

plied by the bearing bore in millimeters. ) The speeds are those anticipated in advanced

airbreathing engines well into the 1980's. To effect these high speeds in a bearing,
bearing operating temperature, differences in temperature between the inner and outer

races, and bearing power consumption can be tuned to the desirable operating require-

ment by varying four lubricant and cooling parameters. These parameters are outer-

race cooling, inner-race cooling, lubricant flow to the inner race, and oil inlet temper-

ature (ref. 1). The cooling rate at the inner race can be controlled by varying the lubri-

cant flow to the bearing through a number of radial holes in the center and shoulders of

the bearing's split inner race (refs. 1 and 2). Cooling of the outer race is achieved by

flowing the lubricant into grooves around the outer race (ref. 1).

In order'to adequately design for proper bearing thermal management, the effect of

bearing operating parameters such as load and speed on operating temperature and

power loss must be assessed.

The effect of operating speed and load on bearing operation and life has been analyt-

ically considered in references 3 to 5 without considering the effect of the lubricant.

These analyses were expanded in references 6 and 7 to include the effect of lubricant

within the bearing. However, these analyses do not consider the effect of inner- and

outer-race cooling. The experimental work of reference 1 comprised a study of cooling

rate on bearing temperatures and power loss at only one speed and load (3x10 6 DN and

22 240 newtons (5000 lb)). The objectives of the research reported herein are to deter-

mine the parametric effects of speed and load on bearing performance.
In order to accomplish the aforesaid objective parametric tests were conducted in a

high-speed, high-temperature bearing tester with optimally designed 200 and 240 contact

angle 120-millimeter-bore angular-contact ball bearings (ref. 8). The bearings were

manufactured from double vacuum-melted AISI M-50 steel having a room-temperature

Rockwell C hardness of 63. Test parameters were thrust loads of 6672, 13 350, and
22 240 newtons (1500, 3000, and 5000 lb) and nominal speeds of 12 000, 16 000, 20 000,
and 25 000 rpm. Test conditions included an oil-inlet temperature of 428 K (3100 F), a

lubricant flow rate through the inner race of 1.2x10 - 3 cubic meter per minute (0.313

g/min), an inner-race cooling rate of 3.6x10 3 cubic meter per minute (0.94 g/min),
and an outer-race cooling flow rate of 1. 9x10 3 cubic meter per minute (0.5 g/min).
These flow rates were held constant for all tests. The lubricant was neopentylpolyol
(tetra) ester meeting the MIL-L-23699 specification.
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APPARATUS, MATERIALS, AND PROCEDURE

High-Speed Bearing Tester

A schematic of the high-speed, high-temperature bearing tester used in these tests

is shown in figure 1. This tester is described in detail in references 9 and 10 and has

been subsequently modified to operate at speeds of 25 000 rpm (ref. 1). The tester con-

sists of a shaft to which two test bearings are attached. Loading is supplied through a

system of 10 springs which apply a thrust load to the bearings. Dual flat belts drive the

test spindle from a 75-kilowatt (100 hp) fixed speed electric motor. The drive motor is

mounted to an adjustable base so that drive pulleys for 12 000 to 25 000 rpm can be used

with the same drive belts. The drive motor is controlled by a reduced voltage auto-

transformer starter which permits a selection of the motor acceleration rate during

startup. This control effectively protects the bearings from undesirable acceleration

during startup.

The lubrication system of the test rig delivers flow rates up to 2. 8x10 - cubic

meter per minute (7.5 g/min). There are three lubricant loops in the system. The oil

flow in each loop is metered by adjustable flow control valves and can be individually

measured by a flow rate indicator without interruption to the machine operation. Twito of

these loops are shown in figure 2. The first of these loops (C ) supplies cooling oil to

the test bearing outer race. The second loop is divided by a lubricant manifold which

feeds individual annular grooves or channels at the shaft internal diameter proportioning

the amount of oil which is to lubricate and/or cool each bearing inner race. The oil flow

to the bearing through a plurality of radial holes in the center of the split inner race is

designated Li . The lubricant used to cool the bearing inner race and lubricate the con-

tact of the cage with the race land through a number of radial holes in the inner-race

shoulder is designated Ci . A selection of various lubricant schemes is permitted by

the lubricant system: these include bearing lubrication through the inner-race split,

lubrication of the cage-race shoulder contact region, the application of inner- and/or

outer-race cooling, and a selection of any desired flow ratio for cooling and lubrication

as well as the conventional lubrication through jets. The third lubricant loop is fed into

the slave bearing which supports the shaft (not shown in figs. 1 and 2). By the system

of valves and manifolds previously discussed an unlimited number of combinations of oil

flows can be achieved to evaluate various conditions. Consequently, values of Li, Ci'

and Co can be independent of each other.

The machine instrumentation includes the standard protective circuits which shut

down a test when a bearing failure occurs or if any of the test parameters deviate from

the programmed conditions. Measurements were made of bearing inner-race speed,

bearing cage speed, test spindle axis amplitude of motion, oil flow, test bearing inner-



and outer-race and lubricant temperatures, and machine vibration level. The inner-

race and cage speeds and spindle excursion measurements were made with magnetic

pickups and proximity probes, respectively. The oil flow was established by a flow-

meter. Bearing outer-race and lubricant inlet and outlet temperatures were measured

by thermocouples and continuously recorded by a strip chart recorder. The inner-race

temperature of the front test bearing was measured with an infrared pyrometer.

Test Bearings

The test bearings were ABEC-5 grade, split inner-race 120-millimeter-bore ball

bearings. The inner and outer races, as well as the balls were manufactured from one

heat of double vacuum-melted (vacuum-induction melted consumable electrode vacuum

remelted) AISI M-50 steel. The chemical analysis of the particular heat is shown in

table I. The nominal hardness of the balls and races was Rockwell C 63 at room tem-

perature. Each bearing contained 15 balls, 2.0638 centimeters (13/16 in. ) in diameter.

The cage was a one piece inner-land riding type made of an iron base alloy (AMS 6415)

heat-treated to a Rockwell C hardness range of 28 to 35 and having a 0.005 centimeter

(0. 002 in.) maximum thickness of silver plate (AMS 2410). The cage balance was

3 grams per centimeter (0.042 oz/in. ).

The retained austenite content of the ball and race material was less than 3 percent.

The inner- and outer-race curvatures were 54 and 52 percent, respectively. The hard-

nesses of all the components with the exception of the cage were matched within +1 Rock-

well C point. This matching assured a nominal differential hardness in all bearings

(i. e., the ball hardness minus the race hardness, commonly called AH) of zero

(ref. 11). Surface finish of the balls was 2.5x10 - 6 centimeter (1 Ain.) AA and the inner

and outer raceways were held to a 5x10 - 6 centimeter (2 AIin. ) AA maximum surface

finish.

A photograph of the test bearing is shown in figure 3. The bearing design permitted

under-race lubrication by virtue of radial slots machined into the halves of the split in-

ner races. It had been shown in reference 2 that this was the most reliable technique

for lubricating high-speed bearings. Provision was also made for inner-race land to

cage lubrication by the incorporation of several small diameter holes radiating from the

bore of the inner race to the center of the inner shoulder.

Lubricant

The oil used for the parametric studies was a 5-centistoke neopentylpolyol (tetra)

ester. This is a type II oil, which is qualified to MIL-L-23699 as well as to the internal

4



oil specifications of most major aircraft-engine producers. The major properties of

the oil are presented in table II and a temperature-viscosity curve is shown in figure 4.

Test Procedure

The test procedure was adjusted according to the test conditions to be evaluated.

Generally, a program cycle was defined which would allow the evaluation of a number of

conditions without a major interruption. Test parameters such as load, speed, and oil

inlet temperature were maintained constant while the tester was in operation. The lu-

bricant flow rate was also constant during operation. The total lubricant flow rate se-

lected was based on the results reported in reference 1. This flow (6. 7x10 - 3 m3 /min

(1. 75 g/min)) assured that the maximum bearing temperature at 25 000 rpm and 22 240

newtons (5000 lb) did not exceed 494 K (4300 F). During operation the tester was allowed

to reach the equilibrium condition before the data were recorded.

Power loss per bearing was determined by measuring line to line voltage and line

current to the test-rig drive motor. Motor drive power was then calculated as a func-

tion of line current. The motor power less estimated test rig tare losses at the various

operating speeds reflected bearing power usage. At 25 000 rpm and 22 240 newtons

(5000 lb) load, this determination of power consumption may be 3 kilowatts (4 hp) low

based on the data presented in reference 1.

RESULTS AND DISCUSSION

Effect of Speed and Load on Bearing Temperature

The effects of load on bearing inner- and outer-race temperatures of the 120-

millimeter-bore angular-contact ball bearings are shown in figures 5 and 6. The 200

and 240 contact angle bearings were run at nominal speeds of 12 000, 16 000, 20 000,

and 25 000 rpm. Test conditions included an oil at 428 K (3100 F), an inner race flow

rate Li of 1.2×10 - 3 cubic meter per minute (0.313 g/min), an inner race cooling rate

Ci of 3.6x10- 3 cubic meter per minute (0.94 g/min) or 3 Li, and an outer race cooling

flow C0 of 1. 9x10 3 cubic meter per minute (0.5 g/min).

Bearing temperatures increased nearly linearly with load for most of the speeds.

For any given speed the temperature rise ranged from 4 to 17 K (8 to 30 F deg) at both

inner and outer races when the load was increased from 6672 to 22 240 newtons (1500 to

5000 lb). At any given speed and load the difference in temperature between the inner

and outer race for the 240 contact-angle bearings (fig. 6) was insignificant and generally
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within ±3 K (±5 F deg). For the 200 contact-angle bearings (fig. 5) the difference be-
tween inner- and outer-race temperatures was largest at the lower loads for all four
speeds. The maximum difference in temperature was 8 K (15 F deg) at 20 000 rpm for
the 6672 newton (1500 lb) thrust load.

The effect of speed on the inner- and outer-race temperatures of the 120-millimeter-
bore angular-contact ball bearings are shown in figures 7 and 8 for the three thrust
loads. Over the range of speeds investigated both inner- and outer-race temperatures
ranged from 441 to 494 K (3350 to 4300 F) or an increase of 53 K (95 F deg). In general,
the 240 contact angles bearing (fig. 8) ran approximately 3 to 8 K (5 to 10 F deg) cooler
than 200 contact angle bearings (fig. 7) over the entire speed range. These differences
in temperature were not considered significant.

Since the effects of bearing contact angle and load appear to be second order effects,
the effect of bearing speed on temperature can be considered independently. The differ-
ence between inner-race temperature and lubricant inlet temperature as a function of
speed is shown in figure 9. (A single line is drawn through the array of data points re-
gardless of contact angle and/or load. ) The resulting temperature of the inner race can
be approximated independently of load and contact angle by the following empirical rela-
tion:

TBi= Toil in + K1Nm (1)

where

TBi inner-race temperature, K (oF)

Toil in lubricant inlet temperature, K (OF)

K1  proportionality factor, (K/rpm)m ((oF/rpm)m)

N speed, rpm

m exponent

For these data, the value for m can be taken as 1. 36. For temperature in degrees
Kelvin, K1 equals 6.3x10 - 5 , for temperature in degrees Fahrenheit, K1 equals 1.2x10 - 4

From this it may be concluded that within the range of data presented the bearing
inner- and outer-race temperatures are more sensitive to changes in speed than changes
in thrust load or contact angle. The bearing speed parameter combined with lubricant
flow rate into the bearing (ref. 1) can give a reasonable engineering approximation of
bearing inner-race temperature.
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Effect of Speed and Load on Bearing Power Loss

The power loss for both bearings over the speed range is shown in figures 10 and 11.

Bearing power consumption increases linearly with speed for the three loads shown. At

a thrust load of 22 240 newtons (5000 lb) and a speed of 25 000 rpm, the power loss per

bearing was approximately 15 kilowatts (20 hp) for both the 200 and 240 contact angles.

At 12 000 rpm and a thrust load of 6672 newtons (1500 lb), the power loss was approxi-

mately 3 kilowatts (4 hp) or 20 percent of the power loss at the high-speed, high-load

condition.

For two contact-angle bearings at a 22 240-newton (5000-1b) load and at low speeds,

the 240 contact-angle bearing had a power loss approximately 25 percent greater than

the 200 contact-angle bearing. At the higher speeds and for all three loads, the differ-

ence in power loss between the two contact angles was essentially insignificant.

Bearing power loss as a function of load for the two contact angles is shown in fig-

ures 12 and 13. The greatest increase in power consumption from the 6672-newton

(1500-1b) thrust load to the 22 240-newton (5000-1b) thrust load occurred at 12 000 rpm

and was approximately 3 kilowatts (4 hp). The increase in power consumption with

thrust load may be considered negligible relative to the effect of speed for most prac-

tical engineering design applications.

From the data of figures 10 and 11 a bearing coefficient of friction can be deter-

mined:

f K2 B (2)
IrDTLN

where

D bearing pitch diameter, m (ft)

f bearing coefficient of friction

K2  constant, m-N/kW-min (ft-lb/hp-min)

N bearing speed, rpm

PB bearing power loss, kW (hp)

TL bearing thrust load, N (lb)

For power in terms of kilowatts, K2 equals 18 244; for power in terms of horsepower,
K2 equals 33 000.

The calculated values of f were essentially independent of'speed and contact angle.

They were, however, a function of load. Average values of f were 0. 008, 0.005, and

0. 003 for loads of 6672, 13 350, and 22 240 newtons (1500, 3000, and 5000 lb), respec-

tively.
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Effect of Speed on Contact Angle

Another effect of speed on bearing operation is the centrifugal effect on outer-race
load or stress and dynamic contact angle. The effect of speed on contact stress and
operating contact angle using the methods of Harris (refs. 6 and 7) is shown in table III.
For these calculations, a bearing operating temperature of 478 K (4000 F) was assumed.
These calculated data show that there is a more marked increase in stress with speed at
the outer-race ball contact at the 6672-newton (1500-1b) thrust load than at the 22 240-
newton (5000-1b) thrust load. This difference in the relative increase in stress at the
outer-race ball contact probably accounts for the slightly higher rate of increase in
power consumption with speed with the lower thrust loaded bearing tests. Bearing run-
ning track location was measured directly on bearings having an initial contact angle of
240 and tested at 12 000, 16 000, and 25 000 rpm with a 22 240-newton (5000-1b) load.
Trigonometric relations were then employed to calculate the actual contact angles.
These contact angles were in excellent agreement with the theoretical predictions made
in table III, with the exception of the inner-race contact angle at the maximum speed
condition. At this speed the measured angle was approximately 250 against a predicted
operating angle of 340. The reason for this discrepancy is not understood at the present
time.

Effect of Load and Inner-Race Speed on Cage Speed

Designers of high-speed turbomachinery are concerned with potential skidding prob-
lems which may occur in rolling-element bearings. Skidding is generally experienced in
lightly loaded, high-speed ball bearings. For angular-contact ball bearings there is con-
troversy as to whether there is a negative effect of skidding. Harris (ref. 6) considers
skidding occurring when "no line of instant centers occurs in the ball inner race contact.
This condition may well occur on the descending portion of the curve of cage/shaft (inner-
race) speed ratio against load. Therefore, the critical load, i. e., the load below which
skidding occurs, may not necessarily be indicated by the curve maximum, although this
is probably a safe design point. "

A plot of cage/shaft speed ratio as a function of thrust load for the 120-millimeter-
bore angular-contact ball bearings is shown in figure 14. Both the experimental and
theoretical (ref. 6) cage speeds are shown. With the exception of the 200 contact angle
bearing at a shaft speed of 12 000 rpm, the experimental values of cage/shaft speed
ratio are less than theoretically predicted. Based on the Harris definition of skidding
(ref. 6), it must be concluded that with the exception of the 12 000 rpm, 200 contact
angle data, the bearings operated in a skidding regime. Visual examination of the bear-
ing surfaces after running showed no damage to the raceways or the balls.
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The amount of skidding occurring in the bearing can be estimated by comparing the

theoretical cage speed with the experimental values. These data are presented in fig-

ure 15. In general, as the bearing thrust load is increased the experimental cage speed

approaches the theoretical estimates. The greatest deviation between experimental and

theoretical values occur at the high-speed, low-load conditions. For the 12 000 rpm

(1.44x106 DN) condition, skidding in the bearing is negligible. However, at the 25 000

rpm (3x106 DN) condition there is approximately 5 to 6 percent skidding in the ball

inner-race contact as determined by the difference between the calculated and experi-

mental cage speeds. However, this amount may be actually less due to the difference

between the measured and theoretical inner-race contact angle.

At the 25 000 rpm speed the elastohydrodynamic (EHD) film thickness divided by the

surface composite roughness (commonly called A) is approximately 4(A - 4) (ref. 11).

This condition is sufficient to give full EHD lubrication. That is, there should be essen-

tially no asperity contacts within the ball-race contacts. Hence, it can be concluded that

where skidding takes place under a full EHD film, no damage to the rolling-element sur-

faces will occur.

SUMMARY OF RESULTS

Parametric tests were conducted in a high-speed, high-temperature bearing tester

with optimally designed 200 and 240 contact angle 120-millimeter-bore angular-contact

ball bearings. The bearings were manufactured from double vacuum-melted AISI M-50

steels having a room temperature Rockwell C hardness of 63. Test parameters were

thrust loads of 6672, 13 350, and 22 240 newtons (1500, 3000, and 5000 lb) and nominal

speeds of 12 000, 16 000, 20 000, and 25 000 rpm. Test conditions included an oil-inlet

temperature of 428 K (3100 F), a lubricant flow rate through the inner race of 1.2x10- 3

cubic meter per minute (0.313 g/min), an inner-race cooling rate of 3.6x10 - 3 cubic

meter per minute (0.94 g/min), and an outer-race cooling flow rate of 1.9x10 - 3 cubic

meter per minute (0. 5 g/min). The lubricant was a neopentylpolyol (tetra) ester. The

following results were obtained:

1. Bearing inner- and outer-race temperatures increased with increases in load

and/or speed. However, the effect of load on temperature was small relative to the

speed effect. The difference between inner and outer race temperatures was negligible.

2. Bearing power consumption increased with speed. The increase in power con-

sumption with thrust load was small relative to the effect of speed for most practical

engineering design applications.

3. A comparison of measured cage speed to theoretical predictions indicates that,

with the exception of the 12 000 rpm, 200 contact angle data, the bearings operated with

some skidding. The highest amounts of skidding (6 percent of the theoretical cage speed)
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occurred at the 25 000 rpm (3x106 DN) test conditions. Skidding decreased with increas-
ing thrust load and decreasing speed. No damage to the bearing surfaces under condi-
tions of skidding was observed.

4. Actual measurements of bearing operating contact angle were in excellent agree-
ment with the theoretical prediction with the exception of the inner-race contact angle at
the maximum speed and load condition.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 11, 1974,
505-04.
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TABLE I. - CHEMICAL ANALYSIS OF VACUUM

INDUCTION ME LTED, CONS UMAB LE- ELECTRODE

VACUUM REMELTED AISI M-50 BEARING STEEL

Element Composition of races and balls,

wt %

Carbon 0.83

Manganese .29

Phosphorus .007

Sulfur .005

Silicon .25

Chromium 4.11

Molybdenum 4.32

Vanadium .98

Iron Balance

TABLE II. - PROPERTIES OF TETRAESTER LUBRICANT

Additives Antiwear, oxidation

inhibitor, antifoam

Kinematic viscosity, cS, at -

311 K (1000 F) 28.5

372 K (2100 F) 5.22

477 K (4000 F 1.31

Flash point, K (OF) 533 (500)

Fire point, K (OF) Unknown

Autoignition temperature, K (OF) 694 (800)

Pour point, K (oF) 214 (-75)

Volatility (6. 5 hr at 477 K (4000 F)), 3.2

wt 70

Specific heat at 477 K (4000 F), 2340 (0. 54)

J/(kg)(K) (Btu/(ib)(oF))

Thermal conductivity at 477 K (400 0 F) 0.13 (0.075)

J/(m)(sec)(K) (Btu/(hr)(ft)(oF))

Specific gravity at 477 K (4000 F) 0. 850
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TABLE III. - CALCULATED OPERATING CONTACT ANGLES AND STRESSES

AS FUNCTION OF INITIAL CONTACT ANGLE, SPEED, AND LOAD

Speed, Thrust load Contact angle, deg Outer race Inner race

rpm
N lb Unloaded Operating Maximum Hertz stress

Outer race Inner race N/m 2  ksi N/m 2  ksi

12 000 6 672 1500 20 13 26 1365x106 198 1420x106 206

13 350 3000 20 18 26 1572 228 1806 262

22 240 5000 20 21 27 1779 258 2130 309

6 672 1500 24 14 30 1344 195 1351 196

13 350 3000 24 19 30 1531 222 1731 251

22 240 5000 24 23 31 1731 251 2048 297

16 000 6 672 1500 20 9 27 1517x106 220 1400406 203

13 350 3000 20 14 28 1682 244 1779 258

22 240 5000 20 18 28 1855 269 2096 304

6 672 1500 24 9 32 1503 218 1330 193

13 350 3000 24 15 32 1648 239 1703 247

22 240 5000 24 19 32 1813 263 2020 293

20000 6 672 1500 20 6 28 1682x106 244 1386x106 201

13 350 3000 20 11 29 1813 263 1758 255

22 240 5000 20 15 29 1958 284 2068 300

6 672 1500 24 6 33 1682 ' 244 1324 192

13 350 3000 24 12 33 1923 260 1682 244

22 240 5000 24 16 33 1924 279 1993 289

25 000 6 672 1500 20 5 29 1889xl06 274 1365106 198

13 350 3000 20 8 30 1993 289 1731 251

22 240 5000 20 12 30 2110 306 2041 296

6 672 1500 24 5 34 1862 270 1310 190

13 350 3000 24 8 34 1993 289 1662 241

22 240 5000 24 12 34 2096 304 1965 285
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First test bearing, / cooling
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i , . assembly
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assembly---
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Front plate--
S Labyrinth

Retaining ,, seal
plate -"
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bearing

-Oil
drain CD-11521-15

LLoad spring tube

Oil out-s-------

Figure 1. -High-speed, high-temperature bearing test apparatus.

Flow path / rBearing housing

Outer /Z C, /
race- LZ.L L Z LLL rTest bearing

Cage

Inner race,'

Shaft I C! C

Flow path

Figure 2. - Lubricant system for test bearings.
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OAPur race

Radial lubrication ge
hole in race shoulder J

Figure 3. - Unfailed 120-millimeter-bore angular-contact high-speed test ball bearing.
Running time, 1000 hours; speed, 25 000 rpm (3 million DN); temperature, 492 K (4250 F);
thrust load, 22 240 newtons (5000 Ib).
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Figure 4. - Viscosity as function
of temperature for tetra-ester
(type II) lubricant.
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30 - 0 Inner race

0 Outer race

460

360 -

440
(a) Inner-race speed, 12 000 rpm,

420 490-

400 480

470-

380g

E E
a-S 450

S340 ,

C440 -
(b) Inner-race speed, 16 000 rpm. (c) Inner-race speed, 20 000 rpm.

440- 500-
Speed,

-Inner race rpm
.Outer race 25000

420- 490 -

40 -20000

470- 16000

460

12000

50 100 150 200 250x10 2  50 100 150 200 250x10 2

Bearing thrust load, N
I I I I I I I I I I

10 20 30 40 50x102  10 20 30 40 50x10 2

Bearing thrust load, Ib
(d) Inner-race speed, 25 000 rpm. (e) Summary.

Figure 5. - Temperature of 200 contact angle bearing as function of bearig thrust load for various speeds. Bearing type, 120-millimeter-boreangularcontact ball bearing; lubricant flow to inner race. Li. 1. 2x10 cubic meter er minute 0. 313 gmin) inner-race cooling fow, C3.6 cubic meter per minute (0.94 glmin); outer-race cooling flow, Co, 1.9x10' cubic meter per minute (0.5 glmin) oil inlet tempera-ture, 428 K (30 F).
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0 Inner race
360 450 - 0 Outer race

440[
(a) Inner-race speed, 12 000 rpm.

420 490

480 -
400

470-

380 -

460

o 360 -

3440

(b) Inner-race speed, 16 000 rpm. (c) Inner-race speed, 20 000 rpm.

4-- Inner race Speed,
--- Outer race rpm

- 25 000

420- 490 -

20000

400 470

4716 0

460- 10

360

12 000

340-

50 100 150 200 250x102  50 100 150 200 250x102

Bearing thrust load, N

I I I I I 0 I I
10 20 30 40 50x10 2  10 20 30 40 50x102

Bearing thrust load, Ib

Id) Inner-race speed, 25 000 rpm. (e) Summary.

Figure 6. - Temperature of 240 contact angle bearing as function of bearig thrust load for various speeds. Bearing type, 120-millimeter-bore
angular-contact ball bearings; lubricant flow to inner race, Li, 1.2x- l cubic meter per minute (0. 313 glmin); inner-race cooling flow, Ci,
3.6x1 3 cubic meter per minute 0.94 g/min); outer-race cooling flow, Co, 1.9x10- 

3 
cubic meter per minute 0. 5 glmin); oil inlet tempera-

ture, 428 K (3100 F).
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440 - 500 -

O Inner race
O Outer race

420- 490 0

480 -
400-

470

380-

460

360-

450

S340 -

440
S(a) Thrust load, 6672 newtons (1500 Ib). (b) Thrust load, 13 350 newtons (3000 lb).

44 500- Thrust load,
X500 N (lb)SI- Inner race 22 240

SI - -- Outer race00) S(5000)

420- 490 -13 350
< (3000)

// - 6672
40 480 -, (1500)

470 - /

460 /

360 - /

450 //

340 
/

441I
10 14 18 22 26x103  10 14 18 22 26x103

Inner-race speed, rpm

(c) Thrust load, 22 240 newtons (5000 Ib). (d) Summary.

Figure 7. - Temperature of 200 contact angle bearing as function of speed for various bearing thrust loads. Bearing type, 120-millimeter-bore
angular-contact ball bearings; lubricant flow to inner race, L, 1.2xI10 cubic meter per minute (0.313 glmin); inner-race cooling flow, Ci,
3.6x10- 3 cubic meter per minute (0.94 glmin); outer-race cooling flow, Co, 1.9x10 - 3 cubic meter per minute (0. 5 glmin) oil inlet tempera-
ture, 428 K (31P F).
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420 490

0 Inner race

480 0 Outer race

400 -

470 -0 -]

380 -

460 -

360-

450 -

340

(a) Thrust load, 6672 newtons (1500 Ib). (b) Thrust load, 13 350 newtons (3000 b).
E440 E 500

Thrust load,
SN (ib)

- - Inner race - 22 240 (5000)
---- Outer race /

420 4904- -2, 13 350 (3000)

480-

46C-

340

10 14 18 22 26(103 10 14 18 22 26x103

Inner-race speed, rpm

(c) Thrust load, 22 240 newtons (5000 Ib). (d) Summary.

Figure 8. - Temperature of 240 contact angle bearing as function of speed for various bearing thrust loads. Bearing type, 120-millimeter-bore
angular-contact ball bearing; lubricant flow to inner race, L, 1. 2x10-3 cubic meter per minute (0. 313glmin); inner-race cooling flow, Ci,
3.6x10- 3 cubic meter per minute (0. 94 g/min); outer-race cooling flow, Co, 1.9x10-3 cubic meter per minute (0. 5 g/min); oil inlet temperature,
428 K (3100 F).
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200-
100-

Contact angle,
150- 80 -deg

- 20
Q 60 0 24

100 --o 50 -

80-
- a 40

L 40 -

30 -

20 -

10 14 18 22 26
Inner-race speed, rpm

Figure 9. - Difference between inner-race temperature and oil inlet
temperature as function of speed. Bearing type, 120-millimeter-
bore angular-contact ball bearing; lubricant flow to inner race,
Li, 1. 2x10 3 cubic meter er minute (0. 313 g/min) inner-race
cooling flow, Ci, 3.6x10-cubic meter per minute (0.94 g/lmn);
outer-race cooling flow, Co, 1.9x10 - cubic meter per minute
(0. 5 g/min); oil inlet temperature, 428 K (310P F).
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2/ I I

8 2-40(500)

8- 6

4

4 /
/

Inner-race speed, rpm
(c) Thrust load, 22 240 newtons (15000 Ib). Id) Summary.

Figure 10. - Bearing power loss for 2t0 contact angle bearing as function of speed for varyingbearing thrust loads. Bearing type,
120-millimeter-bore angular-contact ball bearing; lubricant flow to inner race, Li, 1.210' cubic meter per minyte (0. 313g/rmin);
inner-race cooling flow, Ci, 3.6x103 cubic meter per minute (0.94 glmin); outer-race cooling flow, C0 , 1. 9x10 cubic meter per
minute (0.5 g/min); oil inlet temperature, 428 K (310° F).
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0

12-

8

8- 6

4 0

r "- 2
.M-(a) Thrust load, 6672 newtons (1500 Ib). (b) Thrust load, 13 350 newtons (3000 Ib).

S16 - Thrust load,
20- N (Ib)

22 240 (5000) -' 13 350 (3000)
- 14-
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4-/
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10 14 18 22 26x103  10 14 18 22 26x103

Inner-race speed, rpm

(c) Thrust load, 22 240 newtons (5000 lb). (d) Summary.

Figure 11. - Bearing power loss for 240 contact angle bearing as function of speed for varyingbearing thrust loads. Bearing type,
120-millimeter-bore angular-contactball bearing; lubricant flow to inner race, Li, 1. 2x10 cubic meter per minyte (0.313 glmin);
inner-race cooling flow, C, 3. 6x10' cubic meter per minute (0.94 glmin); outer-race cooling flow, Co, 1.9x10- cubic meter per
minute (0. 5 glmin); oil inlet temperature, 428 K (3100 F).
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8- 6- 0

4-
4L

12

S(b) Inner-race speed, 16000 rpm. (c) Inner-race speed 20 000 rpm.

12 00

88 000(b) Inner-race speed, 16 000 rpm. (c) Inner-race speed, 20 000 rpm.

20- rpm

9 25 O
14-

223

-

12 -
16000

8-

8- 6- 12000

2-

50 100 150 200 250x10 50 100 150 200 250x10 2

Bearing thrust load, N

10 20 30 40 50x102  10 20 30 40 50x102

Bearing thrust load, Ib

(d) Inner-race speed, 25000 rpm. le) Summary.

Figure 12.- Bearing power loss for 200 contact angle bearing as functiorl of bearing thrust load for various speeds. Bearing type, 120-millimeter-bor3
angular-contact ball bearing lubricantflow to inner race, L, 1.2x10 cu ic meter per minute 1(0.313glmin); inner-race cooling flow, Cl, 3.6x10
cubic meter per minute 0.94 glmin); outer-race cooling flow, Co, 1.9x10 cubic meter per minute (0. 5 glmin) oil inlet temperature, 428 K (31(P Fl.
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(a) Inner-race speed, 12 000 rpm.
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8 _ I I I I I I
(b) Inner-race speed, 16 000 rpm. (c) Inner-race speed, 20 000 rpm.
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(d) Inner-race speed, 25 000 rpm. (e) Summary.

Fgure 13. - Bearing power loss for 240 contact angle bearing as function of bearing thrust load for various speeds. Bearing type, 120-millimeter-bor
angular-contact ball bearing- lubricant flow to inner race, L. 1. 2x10-3 cbic meter per minute (0.313 glmin,; inner-race cooling flow, Ci, 3.6x10-
cubic meter per minute (0.94 glmin); outer-race cooling flow, Co, 1.9x10 " cubic meter per minute (0. 5 gminh oil inlet temperature, 428 K (3100 F).
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Figure 14. - Bearing cage speed relative to shaft speed as function of bearing thrust load for various
inner-race speeds. Bearing type, 120-millimeter-bore angular-contact ball bearing; lubricant
flow to i ner race, Li, 1.2x10 cubic meter per minute (0.313 g/min) inner-race cooling flow, Ci,
3.6x10' cubic meter per minute (0.94 gimin) outer-race cooling flow, Co, 1.9x10 cubic meter
per minute (0.5 glmin) oil inlet temperature, 428 K (310P F).
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Figure 15. - Bearing cage speed as function of bearing thrust load for various inner-race speeds.
Bearing type, 120-millimeter-bore angular-contact ball bearing; lubricant flow to inner race,
Li, 1.(x103 cubic meter per minute (0.313 gimin); inner-race cooling flow, C, 3.6x10-

cubic meter per minute (0.94glminh) outer-race cooling flow, Co, 1.9x10 cu ic meter per
minute (0. 5 glminh oil inlet temperature, 428 K (3100 F).
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